A PRESSURE-STABILIZED LAGRANGE-GALERKIN FINITE
ELEMENT SCHEME FOR AN OSEEN-TYPE DIFFUSIVE PETERLIN
MODEL

Masahisa Tabata¹, Maria Lukacova², Hana Mizerova² and Hirofumi Notsu³

¹ Department of Mathematics, Waseda University, Tokyo 169-8555, Japan tabata@waseda.jp
² Institut für Mathematik, Universitat Mainz, Mainz 55099, Germany lukacova@mathematik.uni-mainz.de, mizerova@uni-mainz.de
³ Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8555, Japan h.notsu@aoni.waseda.jp

Key Words: Viscoelastic fluid, Lagrange-Galerkin FEM, Pressure stabilization.

Let Ω be a bounded domain in \(\mathbb{R}^d \) \((d = 2) \) and \(T \) be a positive number. We consider an Oseen-type diffusive Peterlin system which describes a motion of an incompressible viscoelastic fluid,

\[
\begin{align*}
\frac{D_u}{Dt} - \nu \Delta u + \nabla p - \nabla (\text{tr} C) &= f & \text{in } \Omega \times (0,T), \\
\nabla \cdot u &= 0 & \text{in } \Omega \times (0,T), \\
\frac{D_C}{Dt} - \epsilon \Delta C - \left\{ (\nabla u) C + C (\nabla u)^T \right\} + (\text{tr} C)^2 C - (\text{tr} C) I &= F & \text{in } \Omega \times (0,T), \\
u &= 0, \quad C = 0 & \text{on } \partial \Omega \times (0,T), \\
u = u^0, \quad C = C^0 & \text{in } \Omega \at t = 0,
\end{align*}
\]

where \(u : \Omega \times (0,T) \rightarrow \mathbb{R}^d \) is the velocity, \(p : \Omega \times (0,T) \rightarrow \mathbb{R} \) is the pressure, \(C : \Omega \times (0,T) \rightarrow \mathbb{R}^{d \times d} \) is the conformation tensor, \(\frac{D_u}{Dt} = \frac{\partial}{\partial t} + w \cdot \nabla \), \(w : \Omega \times (0,T) \rightarrow \mathbb{R}^d \) is a given velocity, \(\nu \) and \(\epsilon \) are positive constants, \(f : \Omega \times (0,T) \rightarrow \mathbb{R}^d \), \(F : \Omega \times (0,T) \rightarrow \mathbb{R}^{d \times d} \), \(u^0 : \Omega \rightarrow \mathbb{R}^d \) and \(C^0 : \Omega \rightarrow \mathbb{R}^{d \times d} \) are given functions, \(\text{tr} C \) means the trace of \(C \). For this problem we present a Lagrange-Galerkin finite element scheme with Brezzi-Pitkaranta type pressure stabilization, where all unknown functions \((u, p, C) \) are approximated by \(P1 \) elements, and show that
the finite element solution \((u_h, p_h, C_h)\) converges to the exact solution \((u, p, C)\) in order \(\Delta t + h\), where \(\Delta t\) is the time increment and \(h\) is the representative element size.

REFERENCES
